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Figure 1: Walking in monotonous experimental environment (left), and actual VR environment with visual distractions (right) 
while recording gaze and gait data. 

ABSTRACT 
In VR environments, user’s sense of presence is enhanced through 
natural locomotion. Redirected Walking (RDW) technology can 
provide a wider walking area by manipulating the trajectory of the 
user. Considering that the user’s future position enables a broader 
application of RDW, research has utilized gaze data combined with 
past positions to reduce prediction errors. However, in VR content 
that are replete with creatures and decorations, gaze dispersion 
may deteriorate the data quality. Thus, we propose an alternative 
system that utilizes gait data, GaitWay, which correlates directly to 
user locomotion. This study involved 11 participants navigating a 
visually distracting three-tiered VR environment while performing 
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designated tasks. We employed a long short-term memory network 
for GaitWay to forecast positions two seconds ahead and evaluated 
the prediction accuracy. The fndings demonstrated that incorpo-
rating gaze data signifcantly increased errors in highly-distracted 
settings, whereas GaitWay consistently reduced errors, regardless 
of the environmental complexity. 
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1 INTRODUCTION 
Natural walking in virtual spaces signifcantly enhances the sense 
of presence and promotes authentic interactions within virtual 
reality (VR) environments [41, 48], thereby establishing natural 
walking as a fundamental aspect of VR space design [28, 48]. Never-
theless, walking potentially results in physical confrontations with 
obstacles, posing safety risks that necessitate mitigation. Redirected 
walking (RDW) technology has been developed to address these 
concerns, enhancing user safety and optimizing physical space uti-
lization. RDW dynamically alters the VR environment in response 
to user movement, thereby facilitating exploration of more exten-
sive VR areas [36]. However, heightened manipulation may induce 
simulation sickness [1, 9]. To counteract this, RDW incorporates 
a detection threshold (DT) that defnes the permissible extent of 
virtual environment modifcation [13]. Consequently, the capac-
ity of RDW to enlarge VR spaces is inherently limited. Within the 
confnes of the DT, the RDW controller aims to guide users to strate-
gic locations, maximizing VR space utilization while concurrently 
minimizing simulation sickness. 

There are three types of RDW controllers: generalized, scripted, 
and predictive [35]. Predictive controllers have been extensively 
researched because they can handle general environments by pre-
dicting user positions [14, 18, 34, 38, 52, 53, 55]. Path prediction 
often involves analyzing the habitual behaviors of the users [18] by 
employing past directional and speed data to anticipate near-future 
locations [34, 55]. Gaze data incorporation has advanced research 
on dynamic user positioning [38, 52] and in static environments 
[14, 53]. Nonetheless, VR environments, often adorned with elabo-
rate backgrounds and numerous objects, can distract users visually, 
impacting gaze-data reliability. Therefore, our study introduces new 
sensing mechanism: pressure sensors for predicting locomotion. 
Gait data relates directly to a person’s actual movement, expecting 
to provide a more robust prediction than gaze data, which is indi-
rect. Gait data predict walking phases by characterizing repetitive 
walking movements and phases [10, 22]. Moreover, gait data can 
indicate user action states, such as navigating on ramps or stairs 
[40], and assist in distances estimation [47]. These fndings suggest 
that gait data could be instrumental in predicting user locomotions 
in VR. 

To assess the degree of visual distraction, we classifed VR envi-
ronments into three distinct categories: low, mid, and high visual 
distraction levels. The environments’ visual distraction was eval-
uated based on the average eye movement speed, gaze dispersion 
surveys, and the proportion of objects observed by users. In pre-
dicting locomotion, data regarding user position, rotation, gaze, 
and gait were collected. The gait data comprised the center of pres-
sure (CoP) and the anterior–posterior acceleration of each foot. For 
data collection, we adopted the research scenario of Stein, which 
included three gaze interaction scenarios: search, follow, and avoid 
[38]. This data was then utilized to predict positions two seconds 
later by employing a long short-term memory (LSTM) neural net-
work architecture. Our research question is as follows: Can GaitWay 
or gaze data reduce locomotion prediction errors in VR environments 
with visual distractions? 

2 BACKGROUND 

2.1 Gaze During Walking and Visual Distraction 
Previous studies have shown that eye movements are correlated 
with physical activities [26]. Typically, eye movements aligned with 
behavioral objectives are prioritized over other bodily movements 
[15, 25]. Therefore, eye movement can used to estimate action 
intention, but people do not always fx their gaze on future goals 
[8, 16, 33, 44, 45]. Eye movements during walking allow to discern 
both goals and obstacles in the path. For instance, pedestrians 
glance ahead to navigate safely but their gaze tends to shift toward 
their goal as they near it [12, 17]. Moreover, eye movements can 
assess the alternative targets and identify a specifc target amid 
distractions [50, 52]. Consequently, eye movements can be easily 
afected by visual distractions like task requirements [46]. 

2.2 Gait Data Sensing 
Gait data, such as CoP and foot acceleration, efectively represent 
current walking motion information [10, 22, 40]. In Chen et al.’s 
study, the utilization of plantar pressure sensors and inertial mea-
surement units enabled the detection of foot pressure, facilitating 
the recognition of movement intentions in various activities [10]. 
Joo et al.’s research employed insole-type pressure sensors to gather 
plantar pressure, estimating the speed of the walking cycle and ex-
ploring the relationship between walking speed and pressure [22]. 
Truong’s study leveraged gait pressure data to accumulate walking 
data over linear distances, employing phase information for precise 
walking distance estimation [47]. These studies collectively suggest 
that gait data, inclusive of walking pressure and foot acceleration, a 
comprehensive range of detailed information pertinent to walking. 
Moreover, since we always have to move our feet when walking 
regardless of task, gait data is directly related to human movement. 
Hence, we confgured our GaitWay system to include posterior-
anterior acceleration and total foot pressure in addition to foot 
CoP. 

2.3 Redirected Walking and Locomotion 
Prediction 

Natural walking in VR can ofer a heightened sense of presence 
[41, 48] compared to other motion techniques like treadmills [27] 
or teleportation [5], but it also presents safety challenges due to 
physical obstacles [36]. Although RDW was developed to address 
user safety and walking space [36], it can induce motion sickness 
owing to mismatches between the virtual and real environments 
[1, 9]. Thus, RDW incorporates a DT [13], which restricts the extent 
of user direction changes, limiting the capability of RDW to avoid 
obstacles and curtailing the expandable space. 

Eforts to enhance the spatial capabilities of RDW have focused 
on two main strategies: 1) DT expansion, and 2) enhancement of 
RDW controllers. Firstly, the expansion of DT has been pursued by 
using insights from the human vestibular system or gaze, which can 
categorized into stimulus-based methods [3, 19–21, 24, 29, 30, 32] 
and behavior-based methods [4, 30, 31, 42, 43]. Secondly, improving 
RDW controllers, particularly predictive controllers, can further 
improve the spatial expansion of RDW by optimizing the increased 
DT. There are three types of RDW controllers: generalized, scripted, 
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and predictive [35]. Generalized controllers direct users to specifc 
points (steer-to-center, steer-to-waypoint) or orbits (steer-to-orbit) 
[35], whereas scripted controllers alter direction based on prede-
fned criteria at certain locations [36]. However, these two meth-
ods encounter limitations in enhancing RDW performance due 
to their static algorithms and predetermined directional guidance 
[54, 55]. Consequently, there are studies tried to develop predictive 
controllers dealing with more diverse VR environments, which dy-
namically determine the appropriate direction and manipulation 
intensity. Zmuda and Nescher developed an algorithm that steers 
users towards directions with more expansive physical space in 
VR intersections, by calculating the future real-world locations of 
potential walking paths [34, 55]. Zank and Kunz demonstrated that 
models incorporating additional gaze data in T-shaped corridors, 
based on walking patterns, yielded fast and accurate predictions 
[2]. Recent studies even combined additional body data like gaze 
[7, 14, 17, 26], or applied deep-learning methods [11]. Stein et al.’s 
work further extended this concept by integrating gaze data into 
the LSTM model, demonstrating enhanced performance with this 
inclusion [38]. 

Our study aims to reduce locomotion prediction errors by sug-
gesting GaitWay, which incorporates gait data into the deep learn-
ing framework. 

3 METHOD 

3.1 Apparatus 
The experimental setup involved the Meta Quest Pro, featuring a 72 
Hz refresh rate, 105◦ feld of view, and 1080×1920 pixels display per 
eye. The VR environment was developed in Unity and wirelessly 
connected to a desktop with an RTX 2080 GPU. The participants 
were outftted with a waist belt and had the nondominant-hand 
controller afxed to the belt to measure the body’s yaw. Object 
interactions during tasks were executed using the dominant-hand 
controller. Eye tracking was conducted using the Quest Pro, achiev-
ing an average accuracy of 1.652◦ and an SD of 0.699◦ within a 15◦ 

feld of view, on par with current VR headsets [37, 39, 49], at a 30 
Hz tracking rate. Prior to the experiment, participants underwent 
an eye calibration process using the Quest Pro built-in procedure. 
During each trial, participants engaged in gaze fxation on fve 
custom-designed fxation points [23] to calibrate potential slippage 
during walking. For tracking gait data, the Moticon OpenGo sensor 
was utilized, comprising 16 sensors with a sensitivity range of 0–50 
N/cm2 and a resolution of 0.25 N/cm2. The tracking frequency for 
gait data was set at 50 Hz. 

3.2 Experimental Settings 
During the experiment, participants engaged in tasks within the 
Search Room, Corridor, and Obstacle Room. The overall experimen-
tal design was infuenced by a previous study [11] in which three 
gaze interaction scenarios during locomotion (search, follow, avoid) 
were outlined. However, we introduced an element of randomness 
to this setup: we randomized the angle of cylinder arrangement in 
the Search Room and randomized route direction in the Obstacle 
Room. The VR space was sized at 5.5 m × 6.5 m, matching the 
dimensions of the experimental location. Participants initiated the 

experiment by completing a 5-fxation point gaze task and respond-
ing to a distraction question: “How much does it seem like your 
visual attention is scattered?" on an 11-point Likert scale to measure 
perceived visual distractions. Upon completing a task in one room, 
they exited through a door, traversed the corridor to the opposite 
door, and entered the next room for the subsequent task. Corridors 
were situated on either side of the rooms. After each task, a door 
leading to either the right or left corridor was randomly generated, 
ensuring equal occurrences of each. The specifc tasks in each room 
were as follows: 

Search Room. Participants were tasked with identifying the cor-
rect option among seven elliptical columns, as depicted in Fig. 2 (a). 
The orientation of each column was randomized for every task, and 
the hexagonal arrangement, with a 1.6 m gap, was rotated between 
0◦ to 60◦. Participants confrmed their selection by bringing the 
controller close to the sphere atop the column. The correct choices 
triggered a sound, whereas incorrect selections elicited no feedback. 
The position of the correct column varied randomly in each trial. 

Corridor. The corridor served as a transitional space between the 
Search Room and the Obstacle Room. After the task, participants 
navigated through a randomly generated left or right corridor, 
designed to emulate scenarios of following either wall direction. 

Obstacle Room. Participants walked toward a target, avoiding 
obstacles en route. Upon reaching the target and aligning the con-
troller with it, a red platform materialized randomly. The participant 
then moved to this platform, triggering a new path creation. An 
obstacle was placed centrally between the platform and the target, 
potentially ofset by 30 cm to the right, left, or directly along the 
path. Participants completed this process three times. Afterwards, 
they engaged in a fxation task and answered the question. 

The experimental tasks were conducted against backgrounds 
of varying visual distractions, categorized into three levels to ex-
press the VR content situation on the market: low, mid, and high. 
Each level was designed with distinct characteristics, while en-
suring that all task-related objects remained consistent across the 
environments. Each of the three level was created considering the 
controlled environment like the most experiments, the environment 
with feasible background that users can encounter in VR games, 
and the environment with additional active creatures and changes 
that appear in battles or event situations. The created stages was 
adjusted to have signifcant diferences in ‘survey response’ and 
‘proportion of watching distractor’ (details on 3.3.1) through a pilot 
test by four lab members. 

Low distraction. This environment was minimalistic, featuring 
only the essential objects for task completion. It lacked enclosing 
walls but included a monochrome gray-colored ground and white 
skybox. 

Mid distraction. The surrounding space was crafted to emulate 
a snowy landscape, complete with snow-covered terrain, trees, and 
an ornate skybox. This was one of the free assets uploaded to the 
Unity Asset Store. Additionally, eight tall trees and fve small bushes 
were placed continuously around the user’s walking area, allowing 
users to gaze naturally at the trees in most situations. 

High distraction. Dynamic elements were added to this setting. 
Participants encountered moving objects such as birds, dragon, two 
tornadoes, volcano, and freworks. A total of fve sitting birds were 
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Figure 2: Three types of room: (a) search room, (b) corridor, and (c) obstacle room 

Figure 3: Three distinct levels of distraction in the environment: (a) low, (b) mid, and (c) high distraction environments. 

placed on a tree, foor, or stone with similar spacing around the 
foor. The remaining large distractors were placed in a total of fve 
at approximately 70-degree intervals to divert attention from all 
directions. 

This study received approval from the institutional review board. 
Eleven participants (9 males, 2 females; M = 24.7 years, SD = 2.3 
years) were enrolled. Three of them had experience in a VR en-
vironment using an HMD and had a history of participating in 
VR experiments related to RDW. The experiment comprised two 
phases: training data collection and test data collection. In the train-
ing phase, participants undertook 10 trials in a low distraction 
environment. For the test phase, they completed 5 trials in each of 
the low, mid, and high distraction environments. 

3.3 Data Confguration 
Throughout the experiment, we collected two types of data: 1) 
data for assessing visual distraction and 2) data for locomotion 
prediction. 

3.3.1 Data for checking visual distraction. This involved gathering 
users’ gaze data and administering a survey to determine three key 
metrics for evaluating visual distraction: 1) users’ survey responses, 
2) mean eye movement speed, and 3) the proportion of time spent 
focusing on distractors. Eye movement speed can implies visual 
distraction [51], mean eye movement speed was quantifed by calcu-
lating the average two-dimensional velocity of both eyes. The ratio 
of attention was determined by categorizing the objects viewed by 
participants into two groups: ‘Task’ and ‘Distractor’. ‘Task’ includes 
all objects essential for task execution in each room (e.g., target, 
obstacle, ellipse foor, wall), whereas ’Distractor’ includes all other 
elements (e.g., background, non-task-related objects). 

3.3.2 Data for locomotion prediction. Data for locomotion predic-
tion are compared across four conditions: control, gaze, cop, and 
GaitWay. This is to see whether our new proposal, GaitWay, is 

Table 1: Four types of data confguration for input features. 
AP indicates Anterior–Posterior (forward–backward) direc-
tion, and ML indicates Medio–Lateral (left–right) direction. 

HMD Body Gaze Left and Right Foot No. of
Data 

Features 2D Velocity Yaw/Pitch Yaw Yaw/Pitch ML/AP CoP AP Acc. Total Pressure 

Control O O O 5 

Gaze O O O O 7 

Cop O O O O 9 

GaitWay O O O O O O 13 

superior to other types of data confguration. Each condition are de-
scribed in Table 1. As the foot-related features were not infuenced 
by the experimental environment, they were standardized sepa-
rately. Details on additional processing for the remaining features 
can be found in Appendix A. The input sequence for the predictive 
model was established at 75 samples, corresponding to a 3 s time-
frame, enabling the model to predict the position 2 s into the future 
based on the preceding 3 s of data. 

3.4 Prediction Model Specifcation 

Figure 4: LSTM network structure used in locomotion pre-
diction. 

In Niklas’s previous work, prediction errors were reduced when 
LSTM was applied to data including gaze data [38]. We used the 
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same LSTM model for GaitWay system to clarify whether changes 
in the data were due to visual distraction. The model’s architec-
ture includes two LSTM layers with 64 hidden units. Following 
these LSTM layers, a dropout layer with a probability of 0.3 was 
implemented, succeeded by a dense output layer. A weight decay 
of 1 × 10−4 was also applied. The training phase employed the 
mean–square error as the loss function, with a batch size set at 256, 
and was conducted over ten epochs. 10% of the training data was 
utilized as validation data. 

4 RESULTS 

4.1 Analysis of Gaze Data According to Visual 
Distraction Level 

The analysis of the gaze data, as depicted in Fig. 5, was performed 
using a one-way repeated measures ANOVA (RM ANOVA) except 
for Question because of normality. Post-hoc tests was then applied 
using the Bonferroni correction. 

Figure 5: Values of response of question, mean eye-movement 
speed, proportion of watching objects in the distractor cate-
gory according to distraction levels. 

Question. Due to the violation of normality assumptions in 
one of the three datasets, the Friedman test was employed. Results 
revealed signifcant diference, �2 (2) = 8.909, p = .012. Post-hoc 
tests using Wilcoxon signed-rank test showed notable diferences 
in all comparisons (all p = .006). 

Mean eye movement speed. The results identifed a signifcant 
diference, with F(2, 20) = 16.345, p < .001. Post-hoc comparisons 
revealed signifcant distinctions between low-mid and low-high 
distraction levels. Notably, eye movement speed in the high distrac-
tion condition exceeded that of the mid condition, although this 
was not statistically signifcant. 

Proportion of watching distractor. The gaze ratio across the 
three levels revealed a signifcant variance, F(2, 18) = 19.805, p < 
.001. Post-hoc testing displayed signifcant diferences between 
low-mid and low-high levels. 

Overall results indicate that the three levels of distraction in our 
environment made diferences. This suggests that when a user feels 
a large gaze dispersion, actual gaze data such as eye movements 
are also afected. 

4.2 Comparison of Locomotion Prediction 
Performance 

Table 2 presents the mean distance error (MDE) for predicting 
positions 2 s in the future. Subsequently, using the MDE obtained 
from each trial as a data point, diferences were analyzed. After 
post-processing, over 90% of the collected data were utilized. All 
data passed the normality test using the Shapiro-Wilks test. The 
analysis of the gaze data, as depicted in Fig. 6, was performed 
using a one-way RM ANOVA for data confgurations, and ANOVA 
for distraction level, followed by post-hoc tests using Bonferroni 
correction. 

Table 2: MDE values obtained for each condition 

Data Confgurations 
Distraction Level control gaze cop GaitWay 

low 117.3 cm 113.0 cm 108.7 cm 105.7 cm 
mid 120.6 cm 124.7 cm 111.9 cm 109.3 cm 
high 120.5 cm 126.5 cm 112.6 cm 109.2 cm 

Figure 6: MDE results according to distraction levels and data 
confgurations 

GaitWay reduces the prediction error the most. In the low 
distraction environment, a considerable diference was observed, 
with F(3, 196) = 11.187, p < .001. Post-hoc analyses showed signif-
icant disparities between the cop–control, GaitWay–gaze, and 
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GaitWay–control conditions. While the gaze condition did not 
reach statistical signifcance compared to control, it exhibited an 
error reduction of 4.3 cm. In the mid distraction environment, a sig-
nifcant discrepancy was observed with F(3, 196) = 22.036, p < .001. 
Post-hoc tests revealed signifcant diferences for all pairs except 
gaze-control and GaitWay–cop conditions. The gaze condition, 
although not statistically signifcant, displayed an approximate er-
ror increase of 4.1 cm compared to the control condition. At the 
high distraction level, a signifcant diference was noted, with F(3, 
196) = 26.601, p < .001, and post-hoc testing indicated signifcance 
for all pairs except the GaitWay–cop condition. A signifcant in-
crease in error of approximately 6.0 cm was observed in the gaze 
condition compared with the control condition (p = .034). This 
implies our GaitWay confguration consistently reduces prediction 
error across distraction levels. Consequently, GaitWay provides 
robust prediction enhancement for locomotion prediction. 

Gaze data increases the prediction error when visually dis-
tracted. Signifcant diferences were observed solely in the gaze 
condition, with F(2, 78) = 34.630, p < .001; all other confgurations 
were nonsignifcant (p > .1). Post-hoc test results of the gaze condi-
tion indicated signifcance in the low-mid and low-high pairs (p < 
.001). Although a diference of 1.8 cm between mid-high was noted, 
this did not achieve statistical signifcance (p = .180). These imply 
that the gaze condition signifcantly afected by the visual distrac-
tions. Hence, using gaze data may cause prediction degradation in 
an actual VR environment rather than a monotonous experimental 
environment, leading to shrunken walking space. 

5 DISCUSSION 
In this study, we introduced varying degrees of visual distraction 
in the background of the experimental environment while partici-
pants performed identical tasks. Our goal was to present a robust 
and refned locomotion prediction model using gait data. Regard-
ing locomotion prediction, our GaitWay demonstrated a notable 
reduction in prediction error, independent of the level of visual 
distraction. Through this, we demonstrated that gait-related data 
can provide sufcient help in predicting 2D locomotion. Conversely, 
gaze data was observed to increase prediction error under distract-
ing conditions, though it reduced error in low distraction scenarios. 
Thus, GaitWay can improve predictive RDW controllers, widen-
ing the walking space in VR environments with task-irrelevant 
objects, while gaze data can cause counterproductiveness in RDW 
improvement. 

Moreover, we verifed that incorporating additional data features 
(5 to 13) into the LSTM network still ensures feasible prediction 
times. An increase in input features did not adversely impact in-
ference time. We observed an inference time of 4-5 ms per input– 
output pair, consistent across diferent data confgurations. This 
is lower than both the data recording interval of 20 ms and the 
sampling interval of 40 ms, indicating the viability of prediction 
without data loss. 

6 CONCLUSION AND FUTURE WORKS 
Although gaze data remains a valuable component for locomotion 
prediction in VR, its efectiveness diminishes in the presence of 
visual distractions like a VR game. On the other hand, our study 

proved that GaitWay consistently reduces prediction error, irre-
spective of visual distractions. This implies users can walk broader 
spaces using RDW in actual VR content by GaitWay system than 
before. However, it remains unclear how much improvement in 
locomotion prediction performance translates to RDW enhance-
ment. Furthermore, the integration of gaze data can still diminish 
predictions error, especially in low distraction. This approach can 
be achieved by using diferent data confgurations for GaitWay 
depending on the distraction level. Other prediction models pre-
sented after LSTM can also be applied to enhance accuracy. We aim 
to pursue further research regarding the potential spatial expan-
sion benefts when applying enhanced GaitWay system to RDW or 
whether the end-to-end inference time for prediction is applicable 
with real-time user usability evaluation. 
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A DATA PROCESSING EXCEPT FOR GAIT 
DATA 

In our predictive model, we focused on forecasting the user’s po-
sition two seconds ahead from the moment data is received. Stein 
[38] selected a prediction time of 2.5 s, whereas Cho [11] opted for a 
1 s interval. Although reducing the prediction time might decrease 
the error, this is often proportional to the average distance a user 
traverses during that interval. In our study, the average distance 
covered by users in 2 s was 157 cm, consistent with the fndings 
in [38]. Therefore, we selected this duration for our experiments. 
Consequently, the mathematical representation for predicting the� � 
position two seconds later is denoted as � � , � � , � � .

�+2� � +2� � +2� 
To mitigate the infuence of environmental factors, we recentered 

all the coordinates surrounding the user’s position, adopting the 
coordinate system outlined in [6]. This entailed calculating the 
average head orientation within the input sequence to determine� � 

Φ� the reference coordinate system 
� −� , Θ�

� 
−� , Ψ

� . Following this, 
� −� 

we rotated the future vector F, which indicates the position two 
seconds ahead, based on the reference yaw angle. 
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� � � �→− 
� � = ��

� , ��
� = ��

� 
+2� − ��

� , ��
� 
+2� − ��

� (1) � � � � 
−Ψ� −Ψ� � � = cos �� − sin �� (2)� � −� � � −� � � � � � 

� � −Ψ� �� −Ψ� �� = sin + cos (3)� � −� � � −� � 

The velocity of the head, two of the seven features, was also 
rotated with respect to the reference coordinate system. However, 
it’s important to note that the velocity along the y-axis was not 
included in this rotation.� � � � 

�� −Ψ� � � −Ψ� � � = cos � −� − sin (4)� −� � −� � −� � −� � � � � 
�� −Ψ� � � −Ψ� � � = sin � −� + cos (5)� −� � −� � −� � −� 

The yaw and pitch of the head, the yaw of the body, and the yaw 
and pitch of the eyes were all adjusted to the yaw and pitch of the 
reference coordinate system. As described in Section 3.1, the body 
yaw was collected using the nondominant-hand controller. 

= Ψ� � � 
� −� − Ψ� (6)� −� � −� 

= Θ� �� 
� −� − Θ� (7)� −� � −� 

� � = Ψ� 
� −� − Ψ� (8)� −� � −� 

= Ψ� � � 
� −� − Ψ� (9)� −� � −� 

�� = Θ� 
� −� − Θ� (10)� −� � −� 
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