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Abstract
The increasing use of artificial intelligence (AI)
technology in turn-based sports, such as bad-
minton, has sparked significant interest in evaluat-
ing strategies through the analysis of match video
data. Predicting future shots based on past ones
plays a vital role in coaching and strategic planning.
In this study, we present a Multi-Layer Multi-Input
Transformer Network (MuLMINet) that leverages
professional badminton player match data to ac-
curately predict future shot types and area coor-
dinates. Our approach resulted in achieving the
runner-up (2nd place) in the IJCAI CoachAI Bad-
minton Challenge 2023, Track 2. To facilitate fur-
ther research, we have made our code publicly ac-
cessible online, contributing to the broader research
community’s knowledge and advancements in the
field of AI-assisted sports analysis.

1 Introduction
The advent of artificial intelligence is bringing significant
changes to sports analytics, with machine learning and deep
learning playing key roles in this change [Du and Peng,
2023][Azad et al., 2022]. These techniques are not only
employed for evaluating the capabilities and performance
of individual players [Hülsmann et al., 2018][Oagaz et al.,
2021][Ghosh et al., 2022], but they also play a crucial role
in analyzing and assessing the strategies that emerge from
interactions between players [Azad et al., 2022][Han et al.,
2022][Chen et al., 2022][Chang et al., 2023][Wang et al.,
2022b][Wang et al., 2022a]. There have been several at-
tempts to utilize artificial intelligence (AI) technology to
evaluate players’ strategies, especially in turn-based sports
such as badminton. In particular, the ability to predict fu-
ture shots based on past ones is integral to player coach-
ing and strategic planning [Wang et al., 2021]. The analy-
sis of shot types that yield successful returns and the iden-
tification of optimal ball drop locations can significantly
aid players in decision-making processes, thereby enhanc-
ing their performance. Several attempts have been made to
utilize AI technology to evaluate players’ strategies, espe-
cially in turn-based sports such as badminton. Wang et al.
proposed a language known as Badminton Language from

Shot to Rally (BLSR) to represent the rally process and em-
ployed Convolutional Neural Networks (CNN) and encoder-
based networks to predict shot influence [Wang et al., 2021]
[Wang et al., 2022a]. Wang et al. also proposed a Shut-
tleNet network, which predicts the sequence of badminton
matches based on a transformer model. In previously pro-
posed models, the prediction of future strokes was primar-
ily based on two variables: shot type and area coordinates.
However, these features may not fully capture the complex-
ity of the game as there are numerous factors that influence
shot type and area. Recognizing this limitation, we pro-
pose a new BLSR prediction network, Multi-Layer Multi-
Input Transformer Network (MuLMINet). We introduced our
approach in the context of the IJCAI-2023 CoachAI Bad-
minton Challenge Track 2: Forecasting Future Turn-Based
Strokes in Badminton Rallies and won second position. This
paper delineates our proposed methodology and the corre-
sponding evaluation process, and the code is available on
our GitHub repository: https://github.com/stan5dard/IJCAI-
CoachAI-Challenge-2023.

2 Method
2.1 Evaluation Metrics of IJCAI CoachAI

Badminton Challenge Track 2
In this challenge, the objective is to predict the future stroke
shot type and area coordinates based on the data from the
first 4 strokes. The evaluation metrics used for this task are
defined as follows:

Score = min(l1, l2, ..., l6) (1)

li = AV G(CE +MAE) (2)
The shot type is evaluated using the Cross-Entropy (CE)

loss, which measures the discrepancy between the predicted
and actual shot-type probabilities. The area coordinate is
evaluated using the Mean Absolute Error (MAE), which
quantifies the average difference between the predicted and
actual area coordinates. To calculate the final score, we take
the average of six evaluation metrics and select the mini-
mum value as the final score. This score serves as an overall
measure of the predictive model’s performance in predicting
stroke shot type and landing coordination. The team with the
lowest loss emerges as the winner of this challenge.
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2.2 Dataset and Data Preprocessing
The competition dataset was based on the ShuttleSet dataset
[Du and Peng, 2023] and consisted of three separate files:
train.csv, validation.csv, and test.csv. The dataset included a
total of 30,172 strokes in the training set, 1,400 strokes in the
validation set, and 2,040 strokes in the test set. The train-
ing dataset, which included data with a rally length of five or
more, formed the basis for model development. In contrast,
the validation and test datasets only included data for the first
four rallies. Participants were required to construct their own
models using the training dataset, and these models were then
tested on the validation and test sets as part of the evaluation
process. The dataset is divided into four primary categories.

• Rally category: round score A, round score B, get point
player, and lose reason

• Temporal category: time number and frame number
• Spatial category: player location area, player location

x, player location y, opponent location area, opponent
location x, opponent location y, landing area, landing x,
landing y, and landing height.

• Hitting category: backhand, around head, and shot type

In order to determine the input features for the model, we
examined the correlation between variables. For categorical
variables, we calculated the Cramer’s V correlation matrix.
Cramer’s V is a measure of association used to assess the
strength and direction of the relationship between two cate-
gorical variables.

Figure 1: Cramer’s V Correlation Matrix between features: PL
denotes player, AH denotes aroundhead, BH denotes backhand,
LH denotes landing height, LA denotes landing area, PLA denotes
player location area, and OLA denotes opponent location area

Variables such as ”aroundhead” (Cramér’s V = 0.23) and
”backhand” (Cramér’s V = 0.25) demonstrated moderate cor-
relations with shot type. On the other hand, landing height
exhibited a strong correlation (Cramér’s V = 0.68) with shot
type. Based on these findings, we identified ”aroundhead,”

”backhand,” and landing height as additional input features
for our model.

Moreover, for the prediction of area coordinates, we in-
cluded player area location and opponent area location as ad-
ditional features. As a result, we utilized a total of eight fea-
tures as input variables for our predictive model. This selec-
tion of features was guided by the observed correlations and
their potential relevance in predicting the desired outcomes.
By incorporating these variables, we aimed to enhance the
model’s accuracy and predictive capabilities.

2.3 Network Architecture Design
The network architecture was specifically designed to accom-
modate additional input features (see Figure 2). We built our
network based on the principles established by ShuttleNet,
which incorporated player and rally encoders and decoders
using BLSR data. We primarily used two encoding methods
to process the input data.

Encoded Type 1 involved representing the shot type,
aroundhead, backhand, height, player location, opponent lo-
cation, and player variables within the input vector. By in-
corporating these variables together, we aimed to capture the
relevant characteristics of the shot type and its associated at-
tributes. Encoded Type 2 focused on encoding the area coor-
dinate, aroundhead, backhand, height, player location, oppo-
nent location, and player variables. By including these fea-
tures within the input vector, we aimed to capture the spatial
information and positional attributes related to the area coor-
dinates.

This design choice was motivated by the observed corre-
lations between shot type, area coordinate, and other vari-
ables. By embedding these variables together, we aimed to
achieve improved prediction performance. Similarly, for the
decoder output, Type 1 and Type 2 were each passed through
the Position Aware Gated Fusion Network. This network was
responsible for predicting area, shot type, aroundhead, back-
hand, height, player location, and opponent location for each
observed player.

2.4 Loss Function Design and Hyper-parameter
tuning

We designed our total loss function as follows:

LT =α(LST +LSL) + (1-α)(LB+LA+LH+LPL+LOL) (3)

LT denotes total loss, LST denotes loss of shot type, LSL

denotes loss of shot landing coordination, LB denotes loss of
backhand, LA denotes loss of around-head, LH denotes loss
of landing height, LPL denotes loss of player location area,
and LOL denotes loss of opponent location area. Alpha (α) is
a hyperparameter that controls the trade-off between the shot
type/location loss and the other losses.

The model was evaluated using a dataset divided into three
subsets: train set, validation set, and test set, derived from
the train.csv dataset. The test set remained fixed, while the
train set and validation set were evaluated using a 5-fold
cross-validation approach. During the evaluation process, the
model underwent 300 epochs with a fixed learning rate of
0.0001 and a batch size of 32. Hyper-parameter evaluation
was conducted by varying the Dimension and Alpha values



Figure 2: Network Architecture: MuLMINet

(see Table 1). Scores were computed based on the evaluation
metric specified in the challenge, and the results were summa-
rized in a table. The average value and standard deviation of
the scores were calculated to assess the model’s performance.

Hyper-parameter Values

Learning rate 0.0001
Batch size 32
Dimension 32, 64, 128
Alpha 0.3, 0.35, 0.4, 0.45
Layer number 1, 2, 3
Epoch 300

Table 1: Hyper-parameter for MuLMINet evaluation

3 Results
3.1 Loss Selection Module
To identify the optimal classifier and regressor, we imple-
mented a Loss Selection Module (see Figure 3) that evalu-
ated 72 different hyperparameter cases. The purpose of this
module was to determine the ideal combination of models
by comparing the average loss across 5-fold cross-validation.
For each hyperparameter combination, we assessed the av-

erage loss and identified the combinations that exhibited ac-
curate predictions for shot type and area coordinates. These
selected combinations were then submitted to the final chal-
lenge as our model entries, reflecting the comprehensive eval-
uation conducted through the Loss Selection Module.

Figure 3: Loss Selection Module

3.2 Optimal Parameter for MuLMINet
After implementing the Loss Selection Module, we success-
fully identified the best case through a comprehensive eval-
uation of 36 different hyperparameter combinations. Based
on the evaluation results, we selected the combinations that
exhibited accurate predictions for shot type and area coordi-
nates. The final combination was submitted as a model entry
for the challenge, and Table 2 shows the score from the vali-
dation process and the final score of the challenge.



Phase Total loss Area loss Shot loss

Validation phase 2.489 0.6674 1.8216
Testing phase 2.5830 0.7703 1.8127

Table 2: Loss score of validation and testing phase

4 Discussions
In the context of our study, it is worth exploring the poten-
tial benefits of treating the inputs for area and shot type dif-
ferently based on their correlations. Although our initial ap-
proach involved embedding all features together in Encoded
Type 1 and Encoded Type 2, regardless of their associations
with shot type and area, we acknowledge that incorporating
highly relevant features for each prediction task could yield
improvements in accuracy.

For future research, we recommend exploring alternative
embedding strategies that take into account feature correla-
tions and tailoring them to the specific requirements of each
prediction task. Such investigations could provide insights
into optimizing model performance and achieving even lower
loss in area coordinates and shot-type prediction tasks.

5 Conclusions
In conclusion, we propose MuLMINet, a novel architec-
ture that leverages multi-layer and multi-input approaches to
accurately predict both shot types and areas on the BSLR
dataset. By integrating a weighted sum loss function and
a loss selection module, we derive optimal parameters and
models. As a result, we achieve the runner-up position (2nd
winner) in the IJCAI CoachAI Badminton Challenge.
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